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1. Introduction

This is the final progress report for ARO Grant DAAG 19-00-1-0465 awarded to the Depart-
ment of Mathematics of Washington State University for the period July 24, 2000 through July
23, 2003. This grant was based on the proposal 39877-MA Low-Complezity Interior Point Algo-
rithms for Stochastic Programming: Derivation, Analysis, and Performance Evaluation submitted
to ARO by the author.

This report is structured according to the guidelines stated in Reporting Instructions (ARO
Form 18). As required in those guidelines, §4 of this report contains a list of publications and
reports that acknowledge support from this grant, and §7 contains a bibliography of references.
In the rest of this report we indicate references to items in this report with item number(s) within
double brackets and references to items in the bibliography with item number(s) within single
brackets. We shall refer to the proposal by the symbol [P].

2. Statement of the problem studied

This section follows the proposal [P] closely. The project was concerned with new, low-
complexity interior point algorithms for stochastic programs including the identification of variants
that are efficient in practice. We take 1 as our model

minimize Z(z;) := q(z1)+ Q2(z1)
subject to z; € & )

where z; € R™ is the decision variable, and the feasible set S; € R™ and the cost function

. R™ — R constitute deterministic data. The function Qp : R* — R is defined recursively as
follows: Qi(xz-1) := E[Qi(zt-1,&,)] is the expectation with respect to random data &, € R* of
the value of a function Q; for ¢ = 2,3,..., N; and the dependence of function Q; on z;—; and a
realization ¢; of &, is specified by

- Qulz-1,8) = z,ienuaf":{qt(mt’&) + Qi1 (®e) : 7t € Sexe-1,€)}, t=23,...N—1, and (2)

Qn(zN-1,€N) = zNieri{nN{QN(zN,fN) :zn € Sn(zN-1,€N)} (3)

where g;(-, &) : K* — R and Si(z;-1,&) C R™, t=2,3,...,N. We assume that random data &,
have the given discrete probability distribution ‘

{(££1p£)7l = 1:2a"'vKt} (4)

fort=2,3,...,N, so that Q(-) Z 1P LQqu(-, &),

We refer to the problem defined by (1-4) as a multistage stochastic program with recourse.
Such an optimization problem is one of the ways in which the following multistage stochastic
decision-making problem illustrated in Figure 1 on p. 3 (where K = I_,K,, t=23,...,N)
may be formulated for solution. The vector z; is a decision that has to be made at present (the
stage 1). Later, at stage 2, a realization ¢4 of second stage random data £, becomes available,

1We use the symbol ‘:=’ to indicate equality by definition in mathematical contexts, and assignment in statement of
algorithms. Bold-face letters denote random variables while corresponding normal-face letters denote their realizations.
Superscript T denotes transposition of vectors and matrices. Other superscripts on variables often denote indices rather than
powers.




and a recourse decision a:é may be taken if necessary. This recourse decision is chosen from

the set Sa(x1,&h) at a cost qg(xz,fz) Note that the set S depends on the decision z; already
implemented in stage 1, and the specific realization €4 of the random variable £, observed. The
decision process has a total of N stages. At each of the stages 2 through N, realizations of random
variables are observed, and recourse decisions are made similarly. The formulation (1-4) states
that the decision z; € S; that needs to be made at present without the knowledge of realizations
of random variables €5,&3, ..., &y that will be observed in future stages, is to be made so that the
cost ¢1(z1) plus the average of the costs of future recourse decisions Q(z1) is minimized.

There are many applications of stochastic programs with recourse. These application ar-
eas include energy planning, agriculture, airline scheduling, optimal control problems, industrial
management, natural resource management such as lake eutrophication management and forestry
management, telecommunication, and problems in mathematical finance such as portfolio opti-
mization. Please consult the monographs [8, 21, 9, 3] and references contained therein. We now
mention some more specialized applications. Midler and Wolmer [15] describe stochastic pro-
gramming models for optimally scheduling airlift operations, devoting special attention to airlift
missions among airports in the continental U.S., aerial ports of embarkation, overseas bases and
aerial ports of debarkation. Martel and Al-Nuaimi [14] describe models for tactical manpower
planning. A two-stage decision model for weapon acquisition with target uncertainty is described
by Nickel and Mangel [17]. Refer to Manne and Richels [13] for an application related U.S. breeder
reactor program. Carifio, Myers and Ziemba [6] describe a comprehensive investment, liability
and risk planning model developed by Frank Russell Company for Yasuda Fire and Marine Insur-
ance Co., Ltd. in Japan. Fragniére and Haurie [10] describe a model to identify optimal policies
that the city of Geneva may adopt for meeting CO2 emission standards required by the Federal
Government of Switzerland by the year 2005.

The representation (1-4) is mathematically equivalent to the large-scale mathematical program

N
minimize Z = §i(z1)+.. +th(:z:t )+ ... -I—Z(jfv(x’N)
1=1
subject to z; € 51, (5)

7} € Sz, /%)
1=12,...,K;, t=2.3,...,N.

In (5), K = It _, K,

a(l,t) = I-l/Kt-]a
_ K, iflmod K; =0
Bt) = { I mod K; ifl mod K # 0,

1=1,2,...,K;, t=2,3,...,N,
and ¢1(-) :== qi(-) and G() = oL qt(~,£f(l’t)) forl=1,2,...,K,, t=2,3,...,N where

P o= 1,
po= gl PN 19 K, t=2,3,...,N.

This equivalence follows from the decision tree representation of (1-4) in Figure 1. In Figure
1, a path from the root to a leaf is termed a scenario. The number of scenarios is Ky =
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HN_zK Assume that the set S; can be represented using m; constraints. Then problem (5) has
ny+ Zt —2 n¢K; variables and m, + Et — m¢K; constraints. Typically, even when the dimensional
parameters m;, n; and v; have moderate values, problem (5) is large-scale because K; depends
exponentially on v; and hence K;’s and in turn Ky's are large. By way of illustration suppose
that N := 5, and that v, := 10, n; := 7 and m; := 6 for t = 2,3,4,5. Suppose further that
each of the v; components of the random variable €, has only two possible realizations, so that
K, =2" =210 for t = 2,3,4,5. It follows that we have over a billion scenarios, and that (5) has
over 7 billion variables and over 6 billion constraints. Note that, as this example illustrates, a
good indicator of the large-scale nature of a stochastic program is its number of scenarios.

As the above example implies, practical stochastic programs are often prohibitively large
for their solution by general-purpose optimization algorithms. (See for example, [16, Table V]
where this is seen for the popular general-purpose code LOQO.) Fortunately, stochastic programs
possess structures (note for example, the structure in the constraint matrix in (5) if the sets S;
could be represented by a finite number of linear constraints) that may be exploited to advantage
in computational algorithms. Algorithms for stochastic programs must invariably exploit the
special structures present in them. Despite tremendous advancements in the development of such
special-purpose algorithms, and in computer hardware and software, computational solution of
practical stochastic programs is still a challenging problem [20, 16].

Research during the past decade into interior point methods have resulted in significant ad-
vancements in the solution of deterministic linear programs. These advances are characterized
by the identification of algorithms with low polynomial complexity and excellent practical perfor-
mance. Motivated by this success researchers have begun to explore interior point methods for
other areas of deterministic mathematical programming such as convex and semidefinite program-
ming, and advances similar to those in the case of linear programming are being made. However,
surprisingly very little research has been devoted to interior point methods for stochastic pro-
gramming. In the context of stochastic programming the desirable interior point methods should
again have low complexity and good practical performance. What we mean by low complexity
here is complexity lower than that of a general-purpose interior point method applied on the
same problem in terms of the number of scenarios. Indeed, such low complexity is a theoretical
measure of how well the structure of the stochastic program has been exploited by the relevant
special-purpose algorithm.

Against the above background, the broad purpose of the project was to derive interior point
methods with such low complexity for certain important special cases of (1-4), and to identify
variants with good practical performance via careful implementation and testing.

We conclude this introductory section by indicating certain special cases of (1-4) investigated
in this project. A two-stage stochastic linear program results when N := 2, the functions ¢; and
g2(+,&1) are linear, and the sets S; and S are specified by linear constraints. A two-stage stochastic
quadratic program (TSSQP) is similarly defined with ¢; and ¢s(-,€) being quadratic instead of
being linear. When N > 2, the functions ¢; and ¢(:,&;) for t = 2,3,..., N are linear, and the
sets Sy for t = 1,2, ..., N are specified by linear constraints we have a multistage stochastic linear
program (MSSLP). A multzstage stochastic convez program (MSSCP) is similarly defined w1th the
functions ¢; and ¢(-,§;:) for t = 2,3,..., N being convex instead of being linear.




3. Summary of the most important results

In this section we summarize the most important results of this project. Whenever possible,
we do so relative to the tasks indicated in [P, pp. D-14,15,16]. Please note that we present these
results in order of importance. We begin with results obtained through work performed in Tasks

2, 3 and 4.

(a) Task2
This task was on the development of a test problem collection of stochastic programs.
We have developed such a test problem collection consisting of instances of TSSLP’s and
MSSLP’s with the following specific features.

(i)

At present the collection involves test problems from 11 application areas: airlift op-
erations scheduling, forest planning, electrical investment planning, selecting currency
options, financial planning, design of batch chemical plants, energy and environmental
planning, network models of asset or liability management, cargo network scheduling,
telecommunication network planning, and bond investment planning.

The 102-page technical report in Item [[4(e)(i)]] below describes this test problem
collection in detail.

We have created a web site (http://www.uwsp.edu/math/afelt/slptestset.html)
providing free access to our test problem collection. For each of the 11 families in the
collection, six pieces of information are provided: description of the application and
problem notation; problem statement in the same notation; numerical example (when
practical); reconciliation to the standard notation for stochastic programs (as given in
Item [[4(a)(iii)]] below); SMPS [4] data files for each problem instance; and optimal
solution for each problem instance.

This web site is maintained by my former doctoral student Andrew J. Felt, who is now
an Assistant Professor of Mathematics and Computing at University of Wisconsin,
Stevens Point.

We presented details of our collection to the research community at the Ninth Interna-
tional Conference on Stochastic Programming held in Berlin, Germany during August
25-31, 2001. (See Item [[4(c)(iii)]] below.) Our work was well-received as fulfilling a
need that existed in the field for a long time. Researchers at the meeting expressed the
view that a quality test set would not only assist algorithm development by providing
a standard set of problems with which to challenge new algorithm implementations,
but also the teaching of stochastic programming.

To further publicize our test problem collection we prepared Item [[4(a)(iii)]] which has
been accepted for publication in INFORMS Journal on Computing. That paper also
includes a request for information on additional test problems from researchers to be
cataloged in a standard manner and made available via our web site. In this sense this
is an “evolving effort”, and our web site will be updated as new test problem instances
are received.

The addition of new test problems from novel applications to our test problem collection
has already begun. Martel and Al-Nuaimi [14] have presented a two-stage stochas-
tic programming approach for optimal tactical manpower planning. Their model is
based on certain assumptions that may be relaxed to make the model more relevant
to applications. Cristina Cacho, a graduate student of the PI, completed a Master’s




project on generalizing the model in [14] in May 2003. Six new test problem instances
based on the resulting extended model will be added to the test problem collection
(http://wuw.uwsp.edu/math/afelt/slptestset.html) in the near future. See Item
[[4(c)(vii)]] below.

Yan Zhang, a new graduate student of the author, has just begun creating similar
models for electric power system planning.

(b) Task 3

The purpose of Task 3 is to address issues necessary to implement a new family of cutting
plane algorithms (CPA) for two-stage stochastic linear programs (TSSLP). In a previous
paper [2], the author has shown that certain algorithms in this family of CPA’s have poly-
nomial complexity that depends linearly on the number of realizations K. This is the lowest
complexity known for any computational algorithm for TSSLP’s, and this family of algo-
rithms was the first to achieve this complexity bound. Since this is a theoretical upper bound
on the computational work required, Task 3 was to implement specific algorithms in this
class so that using the test problems developed in Task 2, their practical performance could
be assessed. We have performed the following specific work on this task.

(i)

(i)

(i)

While the SMPS [4] data format (see Item [[3(a)(iii)]]) for specifying data defining the
TSSLP’s and MSSLP’s is very convenient and natural for users, algorithms are defined
using the data as specified in the mathematical form of equations (1-4) and Figure 1.
We have developed a data structure suitable for implementing algorithms for TSSLP’s
and MSSLP’s, and written C codes that converts data in the SMPS standard format
into this data structure. While we developed this data structure and the conversion
routines for implementing and testing our algorithms, this has been done in a very
general manner so that any algorithm for stochastic programs can be implemented
similarly.

Due to the lack of routines that convert SMPS data into a general data structure
suitable for implementing algorithms for TSSLP’s and MSSLP’s, different input data
formats are being used in different existing implementations of algorithms for TSSLP’s
and MSSLP’s. (Indeed, we observed this when we attempted to obtain codes of existing
algorithms for TSSLP’s and MSSLP’s for comparison with the implementation of our
new algorithms.) The disadvantage is that such codes cannot directly be tested on
large problem instances for which users have data only in the SMPS format.

We believe that our new data structure, and our new C routines for converting data
in SMPS format into that data structure, would be used by developers of software for
TSSLP’s and MSSLP’s. This would promote the adoption of the SMPS standard for
specifying input for software for stochastic programs allowing the full realization of the
benefits of the SMPS standard. It will also allow convenient testing and use of such
software on large meaningful applications.

As an examination of our codes would demonstrate, developing the data structure and
the conversion routines for general use was a major undertaking.

This work formed the Individual Project—MS in Applied Mathematics of my former
Masters student Jason J. Sarich. Jason completed his MS in December 2001, and is
now employed by the Mathematics and Computer Science Division of Argonne National
Laboratory. The C routines are described in Item [[4(e)(iii)]].

We have created a web site (http://www.uwsp.edu/math/afelt/slpinput.html) pro-
viding free access to this C-routine package.
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(c) Task 4

The purpose of this task was to obtain implementations of specific algorithms in our CPA
family and to assess their practical performance relative to each other as well as relative
to existing codes for TSSLP’s. We have developed a modular implementation of the CPA
family that allows obtaining specific members of the CPA family as mentioned in Item (4.1)
in [P, p. D-15]. We have named our modular software package CPA. We have also developed
a parallel version of our code using PVM [11] that runs on a network of computers of the
Department of Mathematics of Washington State University.

(i) Our attempts to obtain existing codes for TSSLP’s as stated in [P, Item (4.2)] of the
proposal have not been successful. Therefore, while we would continue to seek these
codes from other researchers, we have developed modules within the CPA framework
that allow obtaining an implementation of the algorithm of Van Slyke and Wets [22],
the most popular existing algorithm for stochastic programming.

(ii) Using our implementation of the Van Slyke and Wets algorithm as the representative of
the existing algorithms for stochastic linear programs, we have performed the compre-
hensive computational experiments as outlined in [P, Items (4.2),(4.3)]. In particular,
we have performed experiments to compare different algorithms within CPA, to assess
the effects of parallelization, to assess the use of deep cuts relative to shallow cuts, and
to measure the dependence of performance on K. All these experiments have been
performed using our test problem collection, and our C-routines that convert input
for the problem instances in SMPS data into the data structure on which CPA was
developed.

A paper detailing the development of our software package CPA and our computational
experience with it will be prepared and submitted for publication shortly. At this point, we
state the following two general observations on these computational results.

(iii) As indicated in [P, §3], the three new classes of algorithms that were evaluated, namely,
the ellipsoid, the analytic center, and the volumetric center classes all have complexity
linear in K under certain conditions. On the other hand, the complexity of Van Slyke
and Wets [22] algorithm (VWA) is exponential. Thus one may expect a threshold
value K such that for all K > K the new algorithms perform better than VWA. The
important practical question, however, is whether K is reasonably low.

Our computational results indicate that for certain problem families in our test prob-
lem collection the value of K for the comparison of a certain member of the volumetric
center class in CPA and VWA is reasonably low: this volumetric center algorithm in
CPA performs better than VWA even for moderate K values. In addition, when VWA
performs better, its performance is not much better than that of the volumetric center
algorithm.

On the hand, the performance of the ellipsoid algorithms and the analytic center algo-
rithms in CPA were worse than that of VWA in our experiments.

We were not surprised by the poor practical performance of the ellipsoid class: this
is well-known even in the case of deterministic linear programs. However, we were
surprised by the poor performance of the analytic center class, because in the deter-
ministic case interior point algorithms based on analytic center notions are known to
perform better than simplex algorithms for certain classes of practical problems.

Our observations are important, because most practical interior point algorithms for




deterministic optimization are based on analytic center notions.

(iv) Our computational experience with the parallel version of CPA indicates that all four
classes of algorithms, i.e. the three new classes of algorithms in CPA, and VWA,
parallelize nearly linearly. This observation is important because on some problem
instances with large K the serial version of the fastest algorithm in CPA can have
running times of several hours. Thus the parallel version of CPA by virtue of its good
speed-up can reduce the running time for these large problems very significantly.

(v) We have placed CPA on NEOS (Network Enabled Optimization Software) server of
Argonne National Laboratory. NEOS server provides a way for users to provide input
data for an optimization problem to software available on the server, have the model
solved by the software, and then to have the solution reported back to them, all via
the internet. See the article [19] for details. NEOS is freely accessible. Our software
CPA is available at http://www-neos.mcs.anl.gov/neos/solvers/SLP:CPA/.

We now describe several important results obtained in this project that are indirectly related to
the tasks mentioned in [P, pp. D-14,15,16]. Therefore, we label these as peripheral results, but
their importance and relevance are equal to those mentioned in Items [[3(a), (b), (c)]] above.

(d) Peripheral Result 1
The field of interior point algorithms (this project investigated some of them for stochastic
optimization) began with the seminal paper by Karmarkar [12] in 1984, which presented a
polynomial algorithm for (deterministic) linear programs that also had excellent practical
computational performance. The algorithm in that paper was derived using a map referred
to as a “projective transformation”. This map appeared to be strange since no other al-
gorithm known until then (except for a little known algorithm that Davidon [7] presented
in 1980) used a map more general than affine maps. Karmarkar [12] did not provide any
reason for choosing this map. .
In Item [[4(a)(i)]], we show that the projective transformation of Karmarkar [12], and the
map of Davidon [7] are the only continuous, injective maps that preserve convezity (of sets)
in the setting of each algorithm. Preservation of convexity is a very desirable property in
the design of algorithms.
The proof of the results in Item [[4(a)(i)]] is based on a new characterization of convezity-
preserving maps proved in Item [[4(a)(ii)]]. We were surprised when pure mathematicians
indicated that our characterization is new. Therefore, Item [[4(a)(ii)]] is written in a setting
much more general than that required in algorithmic work as in the present project and in
Item ([4(a)(i)]]-
The work in Item [[4(a)(ii)]] required a foundation for projective spaces not available in
the pure mathematics literature. The enthusiasm we received from the referees of Item
[[4(a)(ii)]], prompted us to present this foundation separately in Item {[4(d)(ii)]].
This work was performed in collaboration with Dr. William C. Davidon, whose work in the
mid 1950’s may arguably be considered as the beginning of the field of algorithmic nonlinear
optimization.

(e) Peripheral Result 2
The Peripheral Result 1 above dealt with characterizing continuous, injective and convexity-
preserving maps on subsets of vector spaces as projective maps, and demonstrating the
relationships of maps used in the derivation of two seminal algorithms (Karmarkar’s algo-
rithm for linear programming [12] and Davidon’s collinear scaling algorithms for nonlinear




optimization {7]) to projective maps.

In Item [[4(d)(iii)]], we have shown that by using an apparently new notion that we term
a meridian one can quite simply describe one-dimensional projective spaces in a geometric
manner without using the sophisticated algebraic notion of a field. We were pleasantly sur-
prised by the fact that this apparently new result in pure mathematics was motivated by
our study of computational optimization algorithms.

(f) Peripheral Result 3

As mentioned in Task [P, 3.2, p. D-15), one of the technical issues that require attention in
the case of volumetric center and analytic center classes of algorithms proposed in [2] is the
updating of iterate z to zx4+1 once a cut is added or deleted. This requires an approximate
minimization of certain potential functions. While Newton’s method with line searches
can be used to perform this approximate minimization as suggested in [2], an attractive
alternative was discussed in [1]. In [1] certain line search termination criteria are shown to
be valid for strongly convex functions. While the potential functions that arise in stochastic
linear programs satisfy these strong convexity assumptions, we show in Item [[4(a)(iv)]]
that the line search termination criteria given in [1] would be valid under much milder
assumptions: they are valid for convex functions or for strictly pseudo convex functions.
However, in Item [[4(a)(iv)]] we also give a counterexample to show that these line search
termination criteria may fail for nonconvex functions.

(g) Peripheral Result 4
This continues the work described in Peripheral Result 3. Specifically, we have developed
new algorithms and software for bound-constrained nonlinear optimization based on Davi-
don’s collinear scalings [7].
In Item [[4(d)(iv)]], we describe the derivation of these new algorithms and report results
of our computational experiments with them. In Item [[4(d)(v)]], we report a complete
convergence analysis of the new algorithms.

We now describe results obtained with work in [P, Tasks 1,5,6,7].

(h) Task 1
The purpose of this theoretical task was to extend the work described in [P, §3] for the
linear case to the quadratic and convex cases thus obtaining ellipsoid, analytic center and
volumetric center classes of algorithms for TSSQP’s and TSSCP’s.
We have derived ellipsoid, analytic center and volumetric center algorithm classes for TSSQP’s
and shown that they have polynomial worst case complexity linear in K. Thus the results
in [P, §3] for the linear case extends to the quadratic case.

(i) Task 5
The purpose of this task is to repeat Tasks 3 and 4 on TSSLP’s for TSSQP’s.
The first step of this task is obtaining the analog of CPA for TSSQP’s. This work is in
progress.

(j) Task 6
This task (and Task 7) below are concerned with low-complexity algorithms for MSSLP’s.
While algorithms for two-stage problems can be extended to handle problems with more
than two stages, doing so in a manner that ensures worst-case complexity polynomial in the
number of realizations is not at all clear. The purpose of this task was to derive algorithms
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that belong to the class of direct interior point methods (see [P, §§2.1.2, 2.2.2]). As indicated
in the statement of [P, Task 6], the algorithm of Birge and Qi [5] for two-stage problems
is a direct interior point algorithm with worst-case complexity proportional to K 15 where
K is the number of realizations. In the statement of [P, Task 6] we conjectured that a
similar algorithm could be developed for the multistage problem with worst-case complexity
proportional to K15, A crucial aspect of the algorithm of Birge and Qi [5] that results in
the complexity bound proportional to K is a procedure that computes a certain search
direction in an efficient manner. We have extended that procedure to the multistage case.
This extension is a major step in arriving at an algorithm with complexity proportional to
K15 for MSSLPs.

(k) Task 7

This task was concerned with decomposition interior-point algorithms for multistage prob-
lems. Note that the algorithms in Tasks 1 through 4 are decomposition interior-point al-
gorithms for {wo-stage problems. Such algorithms for two-stage problems have complexity
linear in K, and due to decomposition they can be implemented to exploit parallel process-
ing directly. As indicated in the statement of Task 7, the search for such algorithms for
multistage problem is a difficult theoretical task. We have initiated this task. Specifically, -
we have begun to extend the two-stage algorithm of Zhao [23] to the multistage case, using
volumetric barriers instead of the logarithmic barriers that Zhao [23] uses. Note that loga-
rithmic barriers form the basis for analytic centers, and our computational experience with
the two-stage case (see Item [[3(c)(iii)]] above) indicates that volumetric center algorithms
perform much better in practice than analytic center algorithms.

Yuntao Zhu, a new doctoral student of the author, has just begun exploring these ideas as
part of his doctoral dissertation research.
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web at http://www.wsu.edu:8080/~ari/preprints.html.

(a) Papers published in peer-reviewed journals

(i) K. A. Ariyawansa, W. C. Davidon and K. D. McKennon, ‘On a characterization of
convexity-preserving maps, Davidon’s collinear scalings and Karmarkar’s projective
transformations’, Mathematical Programming (1) 90 (2001) 153-168.

(ii) K. A. Ariyawansa, W. C. Davidon and K. D. McKennon, ‘A characterization of
convexity-preserving maps from a subset of a vector space into another vector space’
Journal of the London Mathematical Society (2) 64 (2001) 179-190.

(iii) K. A. Ariyawansa and A. J. Felt, ‘On a new collection of stochastic linear programming
test problems’, INFORMS Journal on Computing (accepted for publication and in
press).

(iv) K. A. Ariyawansa and W. L. Tabor, ‘A note on line search termination criteria for
collinear scaling algorithms’, Computing 70 (2003), 25-39.

10




(b) Papers published in non-peer-reviewed journals or in conference proceedings
None.
(c) Papers presented at meetings but not published in conference proceedings

(i) On a characterization of convexity-preserving maps (17th International Symposium on
Mathematical Programming, Atlanta, GA, August 7-11, 2000)

(i) A. J. Felt, K. A. Ariyawansa and J. J. Sarich, ‘Open source input routine for SMPS
data’, INFORMS International Meeting, Maui, Hawaii, June 17-20, 2001.

(iii) A. J. Felt and K. A. Ariyawansa, ‘A collection of multistage stochastic linear pro-
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SIAM Conference on Optimization, Toronto, Canada, May 20-22, 2002.
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performance of a volumetric center algorithm for stochastic programming’, INFORMS
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(vi) K. A. Ariyawansa, ‘New algorithms with polynomial complexity for a class of stochastic
optimization problems’, Presentation for the Board of Visitors, Department of Mathe-
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(vii) Cristina Cacho, K. A. Ariyawansa and Andrew J. Felt, ‘On the construction of a family
of stochastic programming test problems’, INFORMS National Meeting, Atlanta, GA,
Octobgr 19-22, 2003.

(d) Manuscripts submitted, but not published
All these manuscripts are presently under consideration by the peer-reviewed journals indi-
cated.

(i) M. Vaziri, K. A. Ariyawansa, K. Tomsovic and A. Bose, ‘On the accuracy of approx-
imating a class of NP-complete quadratic programs (QP) by a class of polynomially
bounded linear programs (LP)’ (submitted to IEEE Transactions on Circuits and Sys-
tems).

(i) K. A. Ariyawansa, W. C. Davidon and K. D. MCKennon, ‘A coordinate-free foundation
for projective spaces treating projective maps from a subset of a vector space into
another’ (submitted to Dissertationes Mathematicae).

(iii) K. A. Ariyawansa, W. C. Davidon and K. D. McKennon, ‘One-dimensional projective
space: Avatar of a meridian’ (submitted to Journal of Geometry).

(iv) K. A. Ariyawansa and W. L. Tabor, ‘A class of collinear scaling algorithms for bound-
constrained optimization: Derivation and computational results’ (submitted to Opti-
mization Methods and Software).

(v) K. A. Ariyawansa and W. L. Tabor, ‘A class of collinear scaling algorithms for bound-
constrained optimization: Convergence theorems’ (submitted to Optimization).

(e) Technical reports submitted to ARO
This list contains technical reports (not intended for journal publication), Master’s project
reports, and doctoral dissertations.
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(i) A Collection of Multistage Stochastic Linear Programming Test Problems (Version
1), Technical Report 00-3, Department of Pure and Applied Mathematics, Washing-
ton State University, Pullman, WA 99164-3113 (This reports the present status of an
evolving effort; see Item [[3(a)(iv)]] above.)

(ii) J. J. Sarich, ‘Expanding the Capabilities of the TAO Optimization Package’, Group
Research Project—M.S. in Applied Mathematics, Department of Mathematics, Wash-
ington State University, December 2001.

(iii) J. J. Sarich, ‘A C Implementation of an Input Routine for Two-Stage Stochastic Linear
Programs’, Individual Project Report—M.S. in Applied Mathematics, Department of
Mathematics, Washington State University, December 2001.

(iv) Wayne L. Tabor, ‘Collinear Scaling Algorithms for Optimization Using Line Searches
and Trust Regions’, Ph.D. Dissertation in Mathematics, Department of Mathematics,
Washington State University, Pullman, WA, December 2002.

5. List of all participating scientific personnel

(a)

(b)

(c)

(f)

K. A. Ariyawansa, Professor of Mathematics, Washington State University, Pullman, WA
(Principal Investigator)

A. J. Felt, Assistant Professor of Mathematics and Computing, University of Wisconsin-
Stevens Point, Stevens Point, WI (former doctoral student of the P.I. at Washington State
University, participated in this project but was not supported by this grant).

Jason J. Sarich, Research Associate, Mathematics and Computer Science Division, Argonne
National Laboratory, Argonne, IL (participated in this project, was supported by this grant
as a research assistant, and received the MS in Applied Mathematics from Washington State

‘University in December 2001).

Wayne L. Tabor, Visiting Assistant Professor of Mathematics, Washington State University
(former doctoral student of the P.I., participated in this project but was not supported by
this grant, and received the Ph.D. in Mathematics from Washington State University in
December 2002).

Cristina Cacho, GE Capital Bank, Mexico City, Mexico (participated in this project but
was not supported by this grant, and received the MS in Mathematics from Washington
State University in May 2003).

Ryan O’Fallon, graduate student, Washington State University, Pullman, WA (participated
in this project, supported by this grant as a research assistant, and is expected to receive
the MS in Mathematics from Washington State University in December 2003).

6. Report of inventions
In this section we list the following three “technology transfer” items.

(a) A new stochastic programming test problem collection with free access at

http://www.uwsp.edu/math/afelt/slptestset.html (see Item [[3(a)]] above).
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(b) A new C-routine package for converting SMPS [4] input data into data structures suitable
for implementing algorithms. This package is freely available at
http://www.uwsp.edu/math/afelt/slpinput.html (see Item [[3(b)]] above).

(c) A new software package CPA for two-stage stochastic programming. This package can be
used freely via the NEOS [19] server
(http://www-neos.mcs.anl.gov/neos/solvers/SLP:CPA/) of the Argonne National Lab-
oratory. See Item [[3(c)]] above.
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